Cost-effectiveness of Pertussis Vaccine Substitution for Tetanus Booster in Prevention of Pertussis in Adults 65 Years and Older Anna Acosta, MD Epidemic Intelligence Service Officer Advisory Committee on Immunization Practices February 22, 2012 National Center for Immunization & Respiratory Diseases Meningitis and Vaccine Preventable Disease Branch ## **Objective** - □ To evaluate the cost-effectiveness of a one-time substitution of Tdap for Td in healthy adults in preventing adult disease and complications - □ Perspectives: - Health system (medical cost) - Societal (productivity loss) #### **Cost-effectiveness Model** - □ Strategy: - one-time Tdap substitution for Td vs. no substitution at age 65 - □ Cohort population: healthy 65 year olds - □ Analytic time frame: 10 years - □ Health Outcomes: - Cases, outpatient illnesses, hospitalizations, pneumonias, deaths - **□** Economic Outcomes: - Cost per case averted, cost per quality adjusted life year (QALY) saved | Variable | Base-Case Estimate | Sensitivity
Analyses | Sources | |--|---|-------------------------|---| | Disease Incidence | 100x mean surveillance incidence
(104 cases per 100,000) | 10-200x
incidence | Laserre, 2011
NNDSS
Nennig, 1996
Strebel, 2001
Ward, 2005 | | Population | | | | | Cohort of 65 year-olds
Age-specific mortality | 2,603,715
Varies by year of age | | US Census
NCHS | | Outcome Probabilities (%) Outpatient Hospitalization Pneumonia Death | Mean % of cases with outcomes
Varies by year of age (86-95)
Varies by year of age (5-14)
Varies by year of age (3-8)
0.05 | | NNDSS | | % of non-hospitalized cases seeking care | 50 | 33-100 | Long, 1990
Saffar, 2011
Ward, 2006
Author
Assumption | ## **Key Vaccine Parameters of the Model** | Variable | Base-Case
Estimate | Sensitivity
Analyses | Sources | | | | | |--|--|-------------------------------------|--|---|--|--|--| | Vaccine Efficacy (%)* | 70 | 60-90 | Blatter 2008;
Frampton, 2006;
Pichichero, 2006;
Skoff, 2011; Ward,
2005; Wei, 2010;
Weston 2012 | _ | | | | | Vaccine Waning* | 5 percentage point reduction in efficacy each year | 20% reduction in efficacy each year | Lee, 2007
Author assumption | | | | | | Vaccine Coverage (%) | 50 | 10-70 | NHIS, 2009 | | | | | | Vaccine Adverse Event (%)
(Incremental, Tdap vs Td)
Local Reaction
Systemic Reaction
Anaphylaxis | 2
1
0.0001 | | Lee, 2007 | | | | | | * Immunosenescence indirectly incorporated via range of efficacy rates and immune waning. | | | | | | | | | NHIS: National Health Interview Survey | | | | | | | | ## **Key Cost Parameters of the Model*** | Variable | Base-Case Estimate | Sources | |------------------------------------|--------------------|--| | Direct (Medical) Costs | | Thomson Reuters | | Outpatient | 217 | MarketScan (2000-9) | | Hospitalization | 11,037 | | | Hospitalization + Pneumonia | 11, 276 | | | Income loss due to hospitalization | 175 | BLS | | Mean number of days hospitalized | 4 | Thomson Reuters
MarketScan (2000-9) | | Adverse Events Costs | | Lee, 2007 | | Local Reaction | 1.12 | | | Systemic Reaction | 1.12 | | | Anaphylaxis | 2,335 | | | Program Costs | | CDC Vaccine Price | | Incremental Increase, Tdap vs Td | 17.16 | | | Discount Rate | 3% | | | * 2010 US Dollars | | | | BLS: Bureau of Labor Statistics | | | ## **Health Utility Parameters of the Model** | Utility | Value | Source | |---------------------|---------|--| | Outpatient Illness | 0.85 | Lee, 2005 | | Hospitalization | 0.81 | Lee, 2005 | | Pneumonia | 0.82 | Lee, 2005 | | Duration of Disease | 56 days | de Serres, 2000
Gilberg, 2002
Postels-Mutani, 1995
Schmitt-Grohe, 1995
Senzilet, 2001
Yih, 2000 | | | | | | | | | ## **Sensitivity Analyses** #### □ One-way analyses • Incidence, vaccine efficacy, immune waning, coverage #### Multi-way analyses - Most cost-effective and least cost-effective scenarios - Key model inputs: incidence, efficacy, immune waning ### Reduction in Health Outcomes Following Tdap Substitution in a 65 year-old Cohort | Outcomes | 3 | Base-Case Reduction Number (%) | |-------------------|--|--------------------------------| | Cases | | 5,335 (25%) | | Outpatient II | Inesses (treated) | 2,461 (25%) | | Hospitalizati | ons | 388 (24%) | | Pneumonias | 3 | 238 (23%) | | Deaths | | 27 (25%) | | | | | | e-case parameters | Incidence: 100x NNDSS
Initial efficacy: 70%
Waning: 5% point decrea
Vaccine coverage: 50% | | | | • | | # Cost-effectiveness Summary of Tdap Substitution in a 65 year-old Cohort* | Cost Effectiveness Ratio | Base-Case | |----------------------------------|-----------| | Cost per case averted | 3,263 | | Cost per hospitalization averted | 44,903 | | Cost per pneumonia averted | 73,122 | | Cost per death averted | 652,525 | | Cost per life-year saved | 42,182 | | Cost per QALY saved | 30,946 | | | | | US Dollars | | *2010 U Base-Case Parameters | | | Incidence | | Efficacy | | Immune | |-----------------------------|---------------|--------------|----------------|--------------|---------------|-----------------| | Cost Effectiveness
Ratio | Base-
Case | Low
(10X) | High
(200X) | Low
(60%) | High
(90%) | Waning
(20%) | | Cost per case averted | 3,263 | 41,025 | 1,165 | 4,334 | 2,045 | 5,244 | | Cost per life-year saved | 42,182 | 530,403 | 15,059 | 55,521 | 26,715 | 65,506 | | Cost per QALY saved | 30,946 | 389,123 | 11,047 | 40,837 | 19,541 | 48,514 | *2010 US Dollars Base-Case Parameters | | | Incidence | | Efficacy | | Immune | |-----------------------------|---------------|--------------|----------------|--------------|---------------|-----------------| | Cost Effectiveness
Ratio | Base-
Case | Low
(10X) | High
(200X) | Low
(60%) | High
(90%) | Waning
(20%) | | Cost per case averted | 3,263 | 41,025 | 1,165 | 4,334 | 2,045 | 5,244 | | Cost per life-year saved | 42,182 | 530,403 | 15,059 | 55,521 | 26,715 | 65,506 | | Cost per QALY saved | 30,946 | 389,123 | 11,047 | 40,837 | 19,541 | 48,514 | *2010 US Dollars Base-Case Parameters | | | Incidence | | Efficacy | | Immune | |-----------------------------|---------------|--------------|----------------|--------------|---------------|-----------------| | Cost Effectiveness
Ratio | Base-
Case | Low
(10X) | High
(200X) | Low
(60%) | High
(90%) | Waning
(20%) | | Cost per case averted | 3,263 | 41,025 | 1,165 | 4,334 | 2,045 | 5,244 | | Cost per life-year saved | 42,182 | 530,403 | 15,059 | 55,521 | 26,715 | 65,506 | | Cost per QALY saved | 30,946 | 389,123 | 11,047 | 40,837 | 19,541 | 48,514 | *2010 US Dollars Base-Case Parameters | | | Incidence | | Efficacy | | Immune | |-----------------------------|---------------|--------------|----------------|--------------|---------------|-----------------| | Cost Effectiveness
Ratio | Base-
Case | Low
(10X) | High
(200X) | Low
(60%) | High
(90%) | Waning
(20%) | | Cost per case averted | 3,263 | 41,025 | 1,165 | 4,334 | 2,045 | 5,244 | | Cost per life-year saved | 42,182 | 530,403 | 15,059 | 55,521 | 26,715 | 65,506 | | Cost per QALY saved | 30,946 | 389,123 | 11,047 | 40,837 | 19,541 | 48,514 | *2010 US Dollars Base-Case Parameters ## **Multi-Way Sensitivity Analyses Summary** #### **Number Prevented (%)** | Outcomes | Base-Case | Most Cost-
Effective | Least Cost-
Effective | |-----------------------|-------------|-------------------------|--------------------------| | Cases | 5,335 (25%) | 20,973 (49%) | 63 (3%) | | Hospitalizations | 388 (24%) | 1,544 (47%) | 4 (3%) | | Pneumonias | 238 (23%) | 953 (47%) | 3 (3%) | | Deaths | 27 (25%) | 105 (49%) | 0.3 (3%) | | Cost per case averted | \$3,263 | \$550 | \$70,699 | | Cost per QALY saved | \$30,946 | \$5,260 | \$654,061 | Base-Case Parameters Incidence: 100x NNDSS value Initial Efficacy: 70% Waning: 5% point decrease each year Vaccine Coverage: 50% Most Cost-Effective Parameters Incidence: 200x NNDSS value Efficacy: 90% Waning: 5% point decrease each year Vaccine Coverage: 70% Least Cost Effective Parameters Incidence: 10x NNDSS value Initial Efficacy: 60% Waning: 20% decrease each year Vaccine Coverage: 10% ### **Assumptions of the Analysis** - □ Incidence and under-reporting - □ Efficacy and immune-waning - □ Health utilities - □ Costs - Comorbidities ### **Conclusions** ### □ Substituting Tdap for Td - Moderate decrease in number of cases and other outcomes - May be a cost-effective intervention #### □ Incidence level drives cost-effectiveness • As incidence level increases, vaccination more cost-effective ### Acknowledgements Garrett Asay Mark Messonnier Tom Clark Nancy Messonnier Amanda Faulkner Kenneth Schmader Jennifer Liang Tami Skoff Stacey Martin Andrew Terranella Peter McIntyre No authors have any known conflicts of interest. This model followed the ACIP Guidance for Health Economics Studies. National Center for Immunization & Respiratory Diseases